Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yun-Long Fu,^a Zhi-Wei Xu,^a Jia-Lin Ren^a and Seik Weng Ng^b*

^aSchool of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ R factor = 0.039 wR factor = 0.098 Data-to-parameter ratio = 13.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

metal-organic papers

Received 15 August 2005 Accepted 17 August 2005

Online 27 August 2005

m1831

catena-Poly[piperazinium(2+) [ferrate(III)- μ -hydroxo- $\kappa^2 O$:O-di- μ -sulfato- $\kappa^4 O$:O'] monohydrate]

In the crystal structure of the title compound, $\{(C_4H_{12}N_2)-[Fe(OH)(SO_4)_2]\cdot H_2O\}_n$, the anion exists as a linear chain that propagates in a zigzag manner along the *c* axis of the monoclinic unit cell. The organic cations, the polyanions and non-coordinated water molecules interact through $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds, forming a three-dimensional network.

Comment

This report describes our continuing studies on the reactions of ferrous sulfate and piperazine under hydrothermal conditions. We have previously described a piperizinium salt of a polyanionic hydroxodisulfatoferrate(III) chain, accompanied by two water molecules of crystallization (Fu *et al.*, 2005). Mixing the reagents in a different order before hydrothermal treatment afforded the corresponding monohydrate, (I) (Fig. 1).

The $[Fe(OH)(SO_4)_2]_{\infty}$ chain adopts a zigzag motif (Fig. 2), and the organic cation and non-coordinated water molecule link the chains into a three-dimensional architecture through N-H···O and O-H···O hydrogen bonds (Table 2). The principal features, *e.g.* bond lengths and repeat distance, of the chain are similar to those already reported (Fu *et al.*, 2005). However, the monohydrate is somewhat more compact, as noted by its density (2.052 Mg m⁻³) compared with that of the dihydrate (1.972 Mg m⁻³).

Experimental

Ferrous sulfate heptahydrate (0.28 g, 1 mmol) was dissolved in water (5 ml). Concentrated sulfuric acid (0.06 ml, 1 mmol) was added, followed by piperazine (0.09 g, 1 mmol) and ethanol (5 ml). The mixture was stirred briefly to form a homogeneous gel; the gel was transferred into a 15 ml Teflon-lined Parr bomb that was then heated 383 K for 72 h. The bomb was cooled and opened to reveal yellow crystals of (I) in about 70% yield with respect to Fe.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of (I), showing 70% displacement ellipsoids (arbitrary spheres for the H atoms). Symmetry codes are given in Table 1.

Crystal data

$(C_4H_{12}N_2)[Fe(OH)(SO_4)_2]\cdot H_2O$
$M_r = 371.15$
Monoclinic, $P2_1/c$
a = 9.2570 (6) Å
b = 18.318 (1) Å
c = 7.1562 (4) Å
$\beta = 98.094 \ (1)^{\circ}$
$V = 1201.4 (1) \text{ Å}^3$
Z = 4

Data collection

Bruker APEX area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.776, T_{max} = 0.907$ 13166 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.098$ S = 1.072743 reflections 200 parameters H atoms treated by a mixture of independent and constrained refinement $D_x = 2.052 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 3698 reflections $\theta = 2.2-28.0^{\circ}$ $\mu = 1.66 \text{ mm}^{-1}$ T = 295 (2) K Rod, yellow $0.26 \times 0.07 \times 0.06 \text{ mm}$

2743 independent reflections 2452 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{max} = 27.5^{\circ}$ $h = -11 \rightarrow 11$ $k = -23 \rightarrow 23$ $l = -9 \rightarrow 9$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0533P)^{2} + 1.0669P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.59 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.38 \text{ e } \text{\AA}^{-3}$

Figure 2

Detail of (I), showing the polyanionic $[Fe(OH)(SO_4)_2]_{\infty}$ chain.

Table 1

Selected geometric parameters (Å, $^\circ).$

Fe1-O1	2.014 (2)	Fe1-O6 ⁱ	2.048 (2)
Fe1–O4 ⁱ	1.999 (2)	Fe1-O9	1.960 (2)
Fe1-O5	2.023 (2)	Fe1-O9 ⁱⁱ	1.977 (2)
\$1-01-Fe1	135.1 (1)	S2-O6-Fe1 ⁱⁱ	135.0 (1)
S1-O4-Fe1 ⁱⁱ	139.4 (1)	Fe1-O9-Fe1 ⁱ	130.8 (1)
S2-O5-Fe1	133.4 (1)		

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Table 2		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O9−H9 <i>o</i> ···O1 <i>w</i>	0.84 (1)	2.16 (1)	2.971 (3)	164 (3)
$O1w - H1w1 \cdots O7^{iii}$	0.85(1)	2.16 (2)	2.955 (4)	155 (4)
$O1w - H1w2 \cdots O8^{iv}$	0.85(1)	2.19 (2)	2.974 (4)	153 (4)
$N1 - H1n1 \cdots O2$	0.85 (1)	1.86 (1)	2.666 (4)	158 (3)
$N1 - H1n2 \cdot \cdot \cdot O8^{v}$	0.85 (1)	1.93 (1)	2.783 (4)	173 (3)
$N2-H2n1\cdots O7^{vi}$	0.85 (1)	1.97 (2)	2.775 (3)	157 (3)
$N2-H2n2\cdots O3^{i}$	0.85 (1)	2.02 (1)	2.844 (3)	162 (3)

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (iii) x, y, z - 1; (iv) -x + 1, -y + 1, -z + 1; (v) $x + 1, -y + \frac{3}{2}, z + \frac{1}{2}$; (vi) $-x + 2, y + \frac{1}{2}, -z + \frac{3}{2}$.

The carbon-bound H atoms were positioned geometrically (C–H = 0.93 Å) and refined as riding with the constraint $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$. The ammonium, water and hydroxy H atoms were located in a difference Fourier map, and were refined with distance restraints of N–H = O–H = 0.85 (1) Å and H···H = 1.39 (1) Å; the H-atom U_{iso} values were refined freely.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank the Natural Scientific Foundation Committee of Shanxi Province (No. 20041031) and the University of Malaya for generously supporting this study.

References

- Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.
- Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1641– m1643.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.